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A high-quality electron beam can be extracted from a channel guided laser wakefield accelerator without
confining the injected particles to a small region of phase. By careful choice of the injection energy, a regime
can be found where uniformly phased particles are quickly bunched by the accelerator itself and subsequently
accelerated to high energy. The process is particularly effective in a plasma channel because of a favorable
phase shift that occurs in the focusing fields. Furthermore, particle-in-cell simulations show that the self-fields
of the injected bunches actually tend to reduce the energy spread on the final beam. The final beam charac-
teristics can be calculated using a computationally inexpensive Hamiltonian formulation when beam-loading
effects are minimal.
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I. INTRODUCTION

The laser wakefield acceleratorsLWFAd is potentially a
compact and inexpensive source of high-energy electrons
f1–3g. It utilizes a short pulse laser to drive a plasma wave
which can be used as an ultrahigh gradient accelerating
structure. In a uniform plasma, the length of the accelerator
is limited to the Rayleigh length associated with the mini-
mum spot size of the laser pulse. This limitation can be re-
moved by guiding the laser pulse in a plasma channel or
other structuref4–9g. Using currently available chirped-pulse
amplification lasersf10,11g such a system could generate
GeV electrons in a length on the order of 10 cmf12–15g.

In a LWFA the accelerated electrons can be taken from
the background plasma as well as from externally injected
particles. In the long-pulse “self-modulated” regimestL
@2p /vp, wheretL is the laser pulse length andvp is the
plasma frequencyd the acceleration of particles from the
background plasma tends to produce a beam with 100% en-
ergy spreadf16–19g. More recently, quasimonoenergetic ac-
celeration of particles from the background plasma has been
observed in simulationsf20,21g and experimentsf22–24g op-
erating in a shorter-pulse regime. Thus far, these experiments
have suffered from poor shot-to-shot stability. Simulations
suggest that stable production of monoenergetic electron
beams can be achieved by operating in the resonant LWFA
regimestL,p /vpd with a moderate intensity driversa&1,
wherea is the normalized vector potentiald and by injecting
electrons from an external sourcef25g. It has generally been
believed that the injected electrons must be phased to within
a small fraction of a plasma period in order to produce a
high-quality beam, although some counterexamples have
been offeredf26–28g. For typical LWFA parameters this
would require that the injected electrons and the driving laser
pulse be synchronized to within tens of femtoseconds and
that the length of the injected electron pulse be similarly
short. A variety of optical injection schemes have been pro-
posed to meet this requirementf29–33g.

This paper presents a study of the particle orbits in a
typical channel-guided LWFA which demonstrates that such
tight bunching of the injected electrons is not always neces-
sary. If the injected electrons are initially monoenergetic, the
accelerating structure itself possesses a phase bunching prop-
erty which can be exploited by carefully choosing the injec-
tion energy. Even when all the phases are uniformly loaded,
a substantial fraction of the particles can be bunched and
monoenergetically accelerated within the same device. The
remainder of the particles are either radially expelled or left
behind as a much lower-energy beam. By tuning the injec-
tion energy to the amplitude of the wakefield, a trade-off can
be made between the charge in the accelerated beam and the
energy spread. This process involves removal or pruning of
electrons that fall into the defocusing portion of the wake,
combined with strong phase bunching and rapid acceleration.
Interestingly, the process becomes even more effective when
there is substantial beam loading. The possibility of using a
long, “unphased” injected electron pulse raises the possibil-
ity of using more conventional injector technology in place
of all-optical injection.

The outline of the remainder of this paper is as follows.
Section II describes a quasi-two-dimensionalsquasi-2Dd
Hamiltonian model that describes the dynamics of monoen-
ergetic electrons loaded uniformly over all phases of a
LWFA. Section III applies this model to the calculation of
trapping efficiencies and energy spreads for typical LWFA
parameters. Section IV presentsturboWAVE f34g simulations
of the process and compares the results to the Hamiltonian
model. Section V summarizes the work and discusses impli-
cations for future LWFA experiments.

II. HAMILTONIAN FORMULATION

A. Basic formulation and phase space orbits

The orbits of test electrons in a one-dimensional LWFA
are often studied by plotting contours of the Hamiltonian,
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which in the wave frame is a constant of the motion. The
Hamiltonian in the wave frame expressed in laboratory frame
coordinates isf3g

Hsg,cd = gs1 − bgbdmc2 + qf0 sin c, s1d

where b is the velocity of the particle normalized to the
speed of lightc, g=s1−b2d−1/2, vg=cbg is both the group
velocity of the laser pulse and the phase velocity of the
plasma wave,m is the mass of the particle,q is the charge of
the particle, and the accelerating field is described by the
electrostatic potentialf=f0 sin c. Here, c=vpsz/vg− td,
wherevp is the plasma frequency,z is the longitudinal coor-
dinate of the particle, andt is time. The Hamiltonian in Eq.
s1d is valid for test particles in one dimension and assumes
that the plasma wave has a low enough amplitude so that
harmonics can be neglected. Although the Hamiltonian is
one dimensional, transverse effects can be partly accounted
for by assuming that particles crossing into defocusing re-
gions are lost due to radial expulsion. In a uniform plasma,
the focusing region is defined by 2pn,c,2psn+1/2d,
wheren is an integer. In a plasma channel the focusing re-
gion is largerf35g, which can significantly improve the per-
formance of the accelerator, as will be seen below.

The contours ofHsg ,cd for a wave with amplitude
ueuf /mc2=10−4 are shown in Fig. 1sad, and those for a wave
with amplitudeueuf /mc2=0.1 are shown in Fig. 1sbd. In both
cases,gg=1/Î1−bg

2=59 which corresponds to a plasma den-
sity of 531017 cm−3 assuming an 800-nm laser pulse is the
driver. A particle introduced into either wave is constrained
to move along a single contour. Ifg.gg, the particles move
from left to right. If g,gg, the particles move from right to
left. The closed orbits correspond to trapped particles and the
open orbits to untrapped particles. The stationary point lies at
g=gg and c=p /2. In the small-amplitude case, the closed
orbits are symmetric about the lineg=gg. In the large-
amplitude case, this symmetry is broken by relativistic ef-
fects. In particular, the particle must spend more time over-
taking the wave than falling behind it due to the fact that the
velocity changes very little at high energies.

In a plasma channel, the boundaries of the focusing region
depend on the channel parameters. We therefore consider the
general case where the focusing region is defined byc−
,c,c+. The largest closed orbit that satisfiesc.c− con-
tains all the orbits corresponding to particles that never cross
into the defocusing region as they are accelerated. This “re-
taining orbit” is defined byHsg ,cd=Hsgg,c−d. The contour
tangent to the dashed line in Fig. 1sad is an example where
c−=0 suniform plasmad. The highest point on the retaining
orbit gives the largest energy a particle can obtain assuming
that g0,gg where g0 is the injection energy. The lowest
point on the retaining orbit gives the minimum injection en-
ergy. These two energies can be determined by solving
Hsg ,cd=Hsgg,c−d for g and evaluating the solution atc

=p /2. Definingf̄=qf0ssin c−−1d /mc2, the result is

g± = gg + gg
2f̄ ± Îsf̄2gg + 2f̄dsgg

3 − ggd. s2d

Injection of a monoenergetic beam into the wave can be
visualized as follows. Imagine a horizontal line superim-

posed on the contours at a vertical position betweeng− and
g+. Each point on the line represents the initial phase space
coordinate of an injected particle. The phase space trajectory
corresponding to each initial condition is simply the contour
intersecting the line at that point. The dashed line in Fig. 1sad
corresponds to a scenario where the injection energy isg−. In
this case, all particles are lost except those atc=p /2. Al-
though the final energy spread would vanish, so would the
charge. By increasing the injection energy, the charge col-
lected increases but so does the energy spread. The problem
is to quantify the proportion in which these two quantities
increase as the injection energy is raised.

B. Collection efficiency and dephasing length

The collection efficiency is defined as the ratio of the
charge emerging from the end of the accelerator to the
charge injected. For monochromatic injection, the collection
efficiency is

FIG. 1. Contours of the Hamiltonian.sad Particle orbits for a
wave with ef0/mc2=10−4. sbd Particle orbits for a wave with
ef0/mc2=0.1. The dashed line insad is tangent to the retaining
orbit and indicates the minimum injection energy.
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h =
cmax− cmin

2p
, s3d

where cmin,c,cmax defines the set of initial phases for
which particles with initial energyg0 never cross into defo-
cusing regions of the wave. Graphically, this interval corre-
sponds to the segment of the lineg=g0 contained within the
retaining orbit. The end points of the line segment can be
found by solvingHsg0,cmind=Hsgg,c−d for cmin with the
result that

cmin = sin−1Fgg
−1 − g0s1 − bgb0d + qf0 sin c−/mc2

qf0/mc2 G , s4d

where we choose the solution satisfyingc−,cmin,p /2. In
a uniform plasmacmax can be found using the fact that the
focusing fields are symmetric aboutc=p /2. In a plasma
channel, however, the focusing fields are shifted toward
negativec which introduces an additional constraint:

cmax= minhp − cmin,c+j. s5d

The final energy spread can only be computed once the
length of the accelerator is specified. The distance traveled
by any particle is the time-integrated velocityz=ebcdt. The
velocity can be expressed in terms of the phase by solving
Hsg ,cd=H0 for b whereH0=Hsg0,c0d, and sg0,c0d is the
initial phase space coordinate of the particle. The result is

b±scd =
bg ± Îf2sf2 + bg

2 − 1d
bg

2 + f2 , s6d

where f =sH0−qf0 sin cd /mc2. With a change of variables,
the integral over time can be converted to an integral over
phase, giving

z=E
c1

c2

n±dc, s7d

where

n± = b±cFvpSb±

bg
− 1DG−1

. s8d

If b.bg, one usesn+ andc2.c1 when evaluating the inte-
gral. If b,bg, one usesn− andc2,c1 when evaluating the
integral.

To construct the integral representing the length of the
accelerator, the phases at which the particle velocity isbg
must be known. These can be found by solvingHsgg,cgd
=H0 for cg. The solutions are given by

cg = sin−1S H0

qf0
−

mc2

ggqf0
D . s9d

The dephasing lengthLd can be defined as the distance for
which electrons injected atc=cmin reach the phasep /2. The
solution to Eq.s9d in the quadrant 0,cg,p /2 corresponds
to the point at which these particles begin to move forward in
phase. Forz.Ld, these particles are decelerated, soLd rep-
resesents the maximum useful length for single stage accel-
eration. Using this solution along with Eqs.s6d–s8d, the
dephasing length is given by

Ld =E
cmin

cg

n−dc +E
cg

p/2

n+dc. s10d

It should be noted that in the evaluation ofLd a singularity
occurs in the integrand atcg. However, the singularity is
integrable and can be evaluated without difficulty using off-
the-shelf mathematical software. In our work we used the
software package Mathematica.

C. Final beam energy and phase characteristics

With the length of the accelerator known, the output
energy and phase of each particle can be computed. By
making a change of variables on the momentum equation
dp/dt=−q¹f and the equation of phase evolutiondc /dt
=sv−vgdvp/vg, and using ¹f=f0svp/vgdcosc, two
coupled ordinary differential equations are obtained for the
momentum and phase as a function of distance propagated
f36g:

dp

dz
= − qf0

vp

vg
Sm2

p2 +
1

c2D1/2

cosc, s11d

dc

dz
= vpF 1

vg
− Sm2

p2 +
1

c2D1/2G . s12d

Again, these equations can be integrated fromz=0 to z=L
using standard off-the-shelf software. The result is the output
energy and phase as a function of the input energy and phase.
Let the output energy be denotedg fsg0,c0d and the output
phase be denotedc fsg0,c0d. Then for monochromatic injec-
tion at g=g0 the mean output energykgl and root-mean-
squaredsrmsd energy spreaddg are given by

kgl =
1

2ph
E

cmin

cmax

g fsg0,c0ddc0, s13d

dg2 =
1

2ph
E

cmin

cmax

fg fsg0,c0d − kglg2dc0, s14d

while mean output phasekcl and rms pulse widthdc are
given by

kcl =
1

2ph
E

cmin

cmax

c fsg0,c0ddc0, s15d

dc2 =
1

2ph
E

cmin

cmax

fc fsg0,c0d − kclg2dc0. s16d

Equationss13d–s16d quantify the beam quality of a LWFA
when the injected particles are loaded into all phases but at a
single energy.

III. HAMILTONIAN ANALYSIS OF UNPHASED,
MONOENERGETIC INJECTION

Using the formulas from Sec. II we wrote a Mathematica
program to calculatedg anddc given an injection energyg0,
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a wave amplitudef0, and a plasma densityne. In this sec-
tion, the phasing of the focusing fields was taken to be that of
a uniform plasmasc−=0, c+=pd. Consider first the effect of
wave amplitude. It is not meaningful to hold the injection
energy fixed since the range of possible injection energies
depends strongly onf0. Instead, the injection energy for
eachf0 may be chosen based on the requirement that a fixed
fraction of the injected particles be transported through the
entire accelerator. In this case, the injection energy is found
from the implicit equation

cminsg0,f0,ned =
p − h

2
, s17d

whereh is the collection efficiency from Eq.s3d. Consider
the case whereh=0.1 andne=531017 cm−3. The energy
spread and pulse length as a function off0 are plotted in Fig.
2. The results are very favorable. The relative energy spread
is on the order of 1% even though 10% of the particles were
collected. Furthermore, for a wide range of wave amplitudes
the particles are bunched to within 1° of phase when they
reach the end of the accelerator. Interestingly, small-
amplitude waves give better relative energy spread while
large-amplitude waves give better phase bunching.

Next the wave amplitude is held fixed and the injection
energy is varied. As discussed below, a wave amplitude of
ef0/mc2=0.1 is meaningful in terms of experiments that
could be carried out in the immediate future. Using this am-
plitude along with a density ofne=531017 cm−3, the length
of the accelerator is 8.9 cm, the minimum injection energy
g− is about 1.7 MeV, and the 1D trapping threshold is about
0.7 MeV. The collection efficiencyh and the energy spread
dg /g are plotted as a function of injection energy in Fig. 3.
The collection efficiency rises very rapidly as the injection
energy is increased and eventually asymptotes to 50% as
g0→gg. The energy spread, by contrast, increases linearly
over the range of energies plotted. The fact that the collec-
tion efficiency rises much faster than the energy spread near
g− makes unphased monoenergetic injection an attractive
possibility.

As a final illustration, Fig. 4 compares the contours of the
Hamiltonian for two different injection energies. The wave
amplitude and plasma density are againef0/mc2=0.1 and
ne=531017 cm−3. The contours corresponding to injection
at 2.14 MeV are shown in Fig. 4sad. The collection efficiency
for this case is 20% and the final energy spread is 6.0%. The
figure shows that it is primarily the outermost closed orbits
that are loaded, and therefore all the particles in the focusing
phase of the wave will eventually reach<400 MeV. The fact
the particles reach<400 MeV at the same time can be un-
derstood by considering that they spend very little time in the
region g,gg compared with the time they spend in the re-
gion g.gg. This is because wheng,gg the energy change
caused by the wake has a greater effect on the velocity than
wheng is large. The particles therefore get swept back to the
point c<0 almost immediately, after which they all move
together fromc=0 to c=p /2. In contrast, Fig. 4sbd shows
contours corresponding to injection atgg<30 MeV. In this
case, all the closed orbits are loaded which leads to an energy
spread of 100%.

IV. PARTICLE-IN-CELL SIMULATIONS

The conclusions of Sec. III are based on the assumption
of exact monochromatic injection of a zero emittance beam
into an idealized accelerating structure. It was assumed that
the only effect of the transverse fields is to eject particles that
stray into the defocusing phases. It was also assumed that the
self-fields of the injected bunches are negligible. To test the
relevance of the conclusions drawn from this model we turn
to the particle-in-cell simulation codeturboWAVE f34g. The
simulation parameters are chosen to correspond to a channel
guided LWFA using a capillary discharge to create the
plasma channel and a femtosecond Ti:sapphire laser to drive
the plasma wave. The simulations are fully relativistic and
fully electromagnetic. They take into account the nonlinear
and transverse structure of the plasma wave, the finite emit-
tance and energy spread of the injected electrons, and the

FIG. 2. Relative energy spreaddg /g and phase spreaddc vs
wave amplitude holding the collection efficiency fixed at 10% and
evaluating at the end of the accelerator. FIG. 3. Collection efficiencyh and energy spreaddg /g vs in-

jection energy holding wave amplitude fixed atef0/mc2=0.1. The
length of the accelerator was 8.9 cm and the mean output energy
was 365 MeV.
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nonlinear evolution of the driving laser pulse. In one ex-
ample the injected charge was set high enough to lead to
substantial beamloading. The computational region is set in
motion at the speed of light in order to approximately match
the group velocity of the laser pulse.

A. Simulation of unphased injection

The simulation models a plasma channel with radial den-
sity profile nsrd=n0s1+r2/ rc1

2 d, wheren0=531017 cm−3 and
rc1=60 mm. A step function is used for the axial density
variation. The laser pulse has a radial amplitude variation
asrd=a0exps−r2/ r0

2d with r0=30 mm. This satisfies the
matched beam conditionr0=rM wheref4g

rM = S rc1
2

pn0re
D1/4

, s18d

with re the classical electron radius. The pulse duration is
chosen to satisfytL=p /vp=80 fs wheretL is the full width

half maximumsFWHMd pulse length, the pulse shape is the
one described in Ref.f34g, and vp is the on-axis plasma
wavelength. The laser power is taken asP0=8 TW. Several
monoenergetic groups of electrons are introduced, each with
a different initial kinetic energyW0=mc2sg0−1d. The char-
acteristic transverse dimension of the electrons,rb0, is chosen
to coincide with the laser spot sizer0. The normalized emit-
tance is taken asen0=1p mm mrad. For the simulations dis-
cussed here and in the next section the injected charge was
negligible.

Figure 5sad shows contours of laser intensity at injection
and the location of a group of unphased 1.6-MeV injected
electrons at the entrance of the plasma channelsz=0d in the
two-dimensionalsslabd coordinate system. Herex is the axial
coordinate in the moving window,y is the transverse coordi-
nate, and the laser pulse moves to the right. The plasma
wavelengthlp=2pc/vp at this density is 47mm, so the in-
jected electron bunch covers more than one acceleration pe-
riod, and particles are loaded over all phases. Figure 5sbd
shows the laser pulse and particles when the front of the
moving window is atz8=ct=3.46 cm. As a result of the
matched injection into the plasma channel, the laser pulse is
essentially unchanged. However, those electrons that have
survived have been strongly focused and phase bunched into
two short bunches that are confined to a region near the axis
and are<30 times more dense than the original beam. The
tendency of the wakefield to strongly bunch the particles
helps minimize the energy spread by forcing all particles to
experience nearly the same accelerating field.

Figure 6sad plots the energy spectrum of the 1.6-MeV
injected electrons at the same propagation distancesz
=3.46 cmd and at the nominal dephasing lengthsz
=6.62 cmd. The spectrum at the first location has a narrow
energy spread and an average energy of 225 MeV. At the
second location, the average energy has approximately
doubled to 406 MeV with an rms spread of 4.9%. Figure
6sbd shows a similar plot for an injection energy of 3.6 MeV.
The higher injection energy results in a significantly broader
energy spread and a reduction in the energy gain. For ex-
ample, atz=6.62 cm, the mean energy is only 320 MeV and
the relative energy spreadDW/W0=0.236. The collection ef-
ficiency is significantly higher, however.

The simulation also gives the phasing between the focus-
ing and accelerating phases of the wake. Figure 7sad illus-
trates the phasing in a uniform plasma, and Fig. 7sbd illus-
trates the phasing in a plasma channel. Both panels are a
false color image of the longitudinal field with a translucent
gray overlay indicating the transverse fields. The red regions
are accelerating, the blue regions are decelerating, and the
grayed over regions are defocusing. In the uniform plasma,
the intersection of the accelerating region with theswhited
focusing region occupies approximately 90° of phase near
the axis. In terms of the Hamiltonian model, this would cor-
respond to takingc−=0 and c+=p /2. In the channel, by
contrast, the focusing region not only occupies slightly more
phase than the defocusing region, but is also shifted toward
the accelerating region. In the particular case considered
here, the focusing region lies betweenc−=−0.75 andc+
=2.65, with focusing and acceleration occurring for −0.75

FIG. 4. Particle orbits in a wave withef0/mc2=0.1 for sad
injection at 2.1 MeV andsbd injection at the group velocity corre-
sponding to 30 MeV.
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,c,1.57. In fact, the intersection of the focusing and ac-
celerating regions is 48% larger than the same intersection in
a uniform plasma.

It is interesting to note that usingc−=−0.75, c+=2.65,
and W0=1.6 MeV in Eq. s10d gives Ld=10.5 cm. This is
substantially longer than the classical dephasing length of
6.62 cm. The reason for the disparity is actually twofold.

First, the classical dephasing length assumesc−=0 andc+
=p /2. Second, the classical dephasing length assumes that
the particle travels at the speed of light throughout the entire
interaction. In both calculations, the finite spot size correc-
tion to the group velocity was accounted for.

B. Comparison of simulations with Hamiltonian model

The simulations discussed above confirmed the expecta-
tion that the laser pulse evolves very little during the inter-
action and that the injected electrons stay near the axis once
they survive the initial bunching and pruning process. A
quantitative comparison of the simulation results with the
predictions of the quasi-2D Hamiltonian model is therefore
appropriate. The simulation is as in the previous section, ex-
cept this time the particles are loaded uniformly over exactly
2p radians of phase. For the Hamiltonian model, we take
f0=0.1, lp/l=59, and the phase velocity of the wake is
assumed to be at the spot-size-corrected group velocity of the
laser pulse.

The solid line in Fig. 8 gives the collection efficiencyh
from the Hamiltonian model as a function of injection energy
W0, using Eqs.s3d ands4d. The solid squares give the corre-
sponding collection efficiences from the simulation. The
agreement is excellent, particularly in terms of the ability to
predict the minimum injection energy and the location of the

FIG. 5. sColord Bunching of unphased monoenergetic electrons.
Shown insad is a false color image of the laser intensitysredd and
the electron densityspurpled at the start of the simulation. Shown in
sbd is the same image after 3.46 cm of propagation in the plasma
channel. The highest electron density insbd is 30 times higher than
that in sad.

FIG. 6. Electron energy distributions after 3.46 cm of accelera-
tion ssolid lined and 6.62 cm of accelerationsdashed lined for sad
electrons injected at 1.6 MeV andsbd electrons injected at 3.6 MeV.
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“knee” in the curve. Furthermore, the quantitative errors are
only about 10%. The dashed line in Fig. 8 gives the relative
energy spreaddg / kgl from Eqs.s13d ands14d, and the open
circles are from the simulation. For low injection energies,
the quantitative errors are again about 10%, although at
higher injection energiessW0=8 MeVd the error rises to
40%.

Figure 9 compares the mean final energykWfl=mc2skg fl
−1d and rms electron bunch lengthdc f as computed bytur-

boWAVE and the Hamiltonian model. The solid curve gives
the mean final energy from Eq.s13d, and the solid squares

are the simulation values. There is a significant drop in the
final energy as the injection energy is increased. This reflects
the collection of electrons over a broader range of phases,
which results in some electrons actually being decelerated as
the propagation distance approaches the classical dephasing
length. The dashed curve plots the final rms normalized
bunch length from Eq.s16d, and the open circles are the
simulation values. As expected, the bunch length is ex-
tremely short for injection energies just above the minimum
injection energy. For example, when the injection energy is
1.6 MeV, the final phase spread isdc f =9.3°, which corre-
sponds to a bunch length of about 4 fs.

FIG. 7. sColord Phase relationship between accelerating and fo-
cusing fields:sad uniform plasma,sbd plasma channel.

FIG. 8. Comparison of energy spread and collection efficiency
vs injection energy as computed by the Hamiltonian model and the
particle-in-cell simulation. The plus and the cross correspond to a
case where beam-loading effects were included in the simulation.

FIG. 9. Comparison of mean energy and bunch length vs injec-
tion energy as computed by the Hamiltonian model and the particle-
in-cell simulation. The plus and the cross correspond to a case
where beam-loading effects were included in the simulation.
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C. Example with beam loading

To determine whether unphased monochromatic injection
remains effective when beam loading is taken into account,
we repeat the above simulation for 2 MeV injection with a
peak electron beam density ofnb=n0/100=531015 cm−3.
The total charge injected was 8.5 nC/cm, which in three
dimensions would translate to about 20 pC. This corres-
ponds to about 68% of the one-dimensional beam-loading
limit f37g

N0 = 5 3 105Sn1

n0
DÎn0A,

whereN0 is the number of electrons in the bunch,n1 is the
density perturbation due to the wake,n0 is the ambient den-
sity, andA is the cross sectional area of the beamsunits are
cgsd. The results from the simulation are shown in Figs. 8
and 9. The collection efficiency, mean energy, and phase
spread are all affected unfavorably, but the change is not
drastic. More interestingly, the energy spread is reduced sig-
nificantly from the value obtained in the test particle limit.
This can be understood by considering the fact that while the
wake tends to accelerate particles at the back of the bunch
more than at the front, the self-fields tend to accelerate par-
ticles at the front and decelerate those at the back. In other
words, the self-fields tend to cancel out the nonuniformity of
the wake. Since the nonuniformity of the wake is what
causes the energy spread to grow, this partial cancellation
helps keep the energy spread narrow. Based on this under-
standing, it appears likely that there is an optimum beam
current which leads to a minimization of the energy spread.
We leave this and other beam-loading issues for future study.

V. CONCLUSIONS

Channel guided laser wakefield accelerators can produce
high-quality electron beams even in cases where the injected
particles are uniformly loaded over all phases. By selecting
the appropriate injection energy, a trade-off can be made be-
tween the charge collected and the final energy spread. The
trade-off is very favorable in that as the injection energy is
increased, the charge collected rises much more rapidly than
the energy spread. This is a result not only of the strong
phase bunching forces exerted by the wakefield, but also of a
phase shift in the focusing fields induced by the presence of
the channel. If the phasing of the focusing fields is known, a
Hamiltonian formulation can be used to predict the mean
energy, energy spread, mean phase, and phase spread of the
accelerated electrons. The predictions of the Hamiltonian
formulation agree well with 2D particle-in-cell simulations.
Finally, the effects of beam loading can actually help to re-
duce the final energy spread on the beam.

The practical implication of this work is that a high-
quality channel-guided LWFA might be built using relatively
conventional technology as the source of externally injected
electrons. Technologies such as dc- or rf-driven photocath-
odes might provide a suitable high-charge injection pulse
more reliably than other more exotic schemes.
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